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Temporal Trends and Origins of Lake Erie Cadmium Contamination in
Relation to Sediment Substrate Type Using Multivariate Kriging Analyses

Abstract
Using the kriging spatial interpolation method, Cd sediment contamination in Lake Erie from 1971 (263
samples) and 1997/1998 (55 samples) were mapped as continuous data surfaces. Although the most recent
data set is two decades old, the roughly 25 year period between the two comprehensive lake-wide surveys
represents a period of intense binational management action to reduce sources of contamination. To improve
interpolation accuracy between two different sampling densities, auxiliary variables including lake-wide
sediment substrate types were integrated into spatial analysis of Cd contamination patterns. The potential for
adverse biological impacts posed by Cd sediment contamination to humans and aquatic life was measured by
the threshold identified contamination along the Long Point Erie Sill and the south-western Ontario shoreline
(composed predominately of glacial till) to be in the range of “practically unpolluted” by anthropogenic
sources. The highest degree of anthropogenic pollution was found in regions of fine-grained materials (mud
and silt). By combining Cd contamination surfaces with sediment substrate categories for analysis of
anthropogenically-derived pollution, regions of the lake at higher risk for long-term sediment contamination
can be targeted for continued monitoring.
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1 INTRODUCTION  
 

Cadmium (Cd) is a naturally occurring heavy metal in the earth’s crust at trace levels 

(Wester et al. 1992). Natural concentrations of Cd in soils range from 0.06 to 1.1 µg/g 

(USHHS, 2012), with a global average of 0.5 µg/g (Kabata-Pendias and Mukherjee 

2007). Particulate matter and debris resulting from forest fires, and volcanic eruptions 

contribute to natural inputs of Cd in the environment (Kabata-Pendias and Mukherjee 

2007).  

Neither humans, flora, nor fauna require Cd for metabolic functions and it is one 

of the most toxic metals added into our environment from anthropogenic sources 

(Kabata-Pendias and Mukherjee 2007). In the physical environment, Cd remains as a 

toxic heavy metal without biodegrading into “less harmful components” over time 

(Pachana et al. 2010). Long-term exposure or ingestion of Cd can result in serious human 

health complications (Sabo et al. 2013; Kabata-Pendias and Mukherjee 2007), 

ecosystem degradation (Pachana et al. 2010; Marvin et al. 2002), as well as air, water, 

and soil pollution (Idriss and Ahmad 2012; USHHS 2012).  

Anthropogenic activities contributing to Cd pollution include (but are not limited 

to): metallurgy (Habashi 2011; Kot-Wasik 2005; Wester et al. 1992), industrial waste 

and waste management (Forsythe et al. 2016a; Dartmouth 2012; Wuana and Okieimen 

2011), mining and mine tailings (Dartmouth 2012; Wuana and Okieimen 2011; Kot-

Wasik 2005), agriculture and agricultural fertilizer (Forsythe et al. 2016b; Wuana and 

Okieimen 2011; Kot-Wasik 2005), coal power plants, and fossil fuel combustion 

(Dartmouth 2012; Wuana and Okieimen 2011; Kot-Wasik 2005). In 2000, the global use 

of Cd was 17,700 tons, 70% of which was used in the production of batteries (Kabata-

Pendias and Mukherjee 2007); a common industrial and household item with a poor 

history of proper disposal (USHHS 2012).  

This research aims to further refine multivariate kriging analysis techniques using 

cadmium contamination in Lake Erie as a potential indicator of a broader range of toxic 

contaminants with similar sources. The results will be examined within the context of 

Canadian Sediment Quality Guidelines for the protection of aquatic life. In addition, the 

examination of relationships between the presence of Cd in sediment samples and 

geochemical, and geomorphological characteristics of Lake Erie will be undertaken. 

This will enhance spatiotemporal models of lake-wide heavy metal contamination. The 

Index of Geoaccumulation (Igeo) will be utilized to investigate sediment contamination 

levels in combination with geostatistical (kriging) techniques for comparative analyses 

during the analysis period. Identifying the most vulnerable regions of Lake Erie to Cd 

contamination based on geochemical affinities of this heavy metal could contribute to a 

“weight of evidence” approach to lake-wide remediation and environmental policy 

implementation.  

 

1.1 Fate of Cd Sediment Contamination in Aquatic Environments   

 

The total amount of Cd present in sediment samples (measured in µg/g) identifies the 

magnitude of heavy metal contamination at specific locations. This measure, although 

valuable in assessing sediment contamination, is not indicative of the mobility or 

bioavailability of Cd within its environment (Idriss and Ahmad 2012; Prokop et al. 2003). 

Sorption and solubility characteristics of both heavy metals and sediment geochemistry 

determine the amount of Cd accessible for bioaccumulation throughout ecosystem 

components (Prokop et al. 2003; Adriaens et al. 2002; Luoma 1989).  
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Influential geochemical variables include sediment grain size, pH, and the 

presence of clay and organic materials (Idriss and Ahmad 2012; Adriaens et al. 2002). 

Bioaccumulation stemming from sediment contamination is particularly concerning as 

concentrations typically exceed those in the water above by several orders of magnitude 

(USHHS 2012; Luoma 1989). Toxicity and mobility of Cd contamination in sediments 

best describe this heavy metal’s fate in aquatic environments (USHHS 2012; Pintilie et 

al. 2007). As a water pollutant, Cd is known to be more mobile than other heavy metals 

(Idriss and Ahmad 2012); as a sediment contaminant, the fate of Cd mobility is 

determined by geochemical conditions of the lake and lake bed (Pintilie et al. 2007). 

 

1.2 Geochemical and Geomorphological Associations to Cd Contamination   

 

Previous research has identified significant relationships between Cd and the particular 

geochemical conditions of contaminated sediments. Greater concentrations of heavy 

metal contamination (including Cd) are seen in fine-grained sediments (Adriaens et al. 

2002; Marvin et al. 2002; Lick et al. 1994) near sources of industrial contamination 

(Kabata-Pendias and Mukherjee 2007; Marvin et al. 2002). Naturally occurring Cd is 

often found in coarse-grained materials such as bedrock and glacial till (Zaidi et al. 2012). 

Across numerous studies of aquatic environments around the world, researchers 

identified significant Cd contamination in sediment grain sizes measured as clay (Birch 

et al. 2015; USHHS 2012; Pintilie et al. 2007; Thomas et al. 1976). A relationship 

between Cd and pH of sediments was reported by Kabata-Pendias and Mukherjee (2007), 

the U.S. Department of Health and Human Services (USHHS 2012) and Idriss and 

Ahmad (2012) although the nature of the relationship is contested amongst researchers. 

Kabata-Pendias and Mukherjee (2007) suggest high mobility of Cd in sediments at pH 

greater than five, whereas the USHHS (2012) reports the opposite, stating that low pH 

values in sediment increase the mobility of Cd contamination. No significant 

relationship is identified between the two variables by Idriss and Ahmad (2012). 

 

 

2 STUDY AREA AND DATA 

  
Lake Erie sediments were first sampled for heavy metal contamination in 1971 by 

Environment and Climate Change Canada (Rukavina et al. 2013; Marvin et al. 2002). 

Due to the increased resource requirements associated with collecting sediment samples, 

and the requirement for more targeted sampling of specific offshore depositional areas, 

subsequent survey densities have decreased since the initial assessment. The first 

sediment survey collected samples from 263 locations following a 10 km by 10 km 

square grid pattern which decreased to 55 locations in the 1997/1998 survey (Figure 1). 

Although the most recent data set is two decades old, the roughly 25-year period 

between the two comprehensive lake-wide surveys represents a period of cooperative 

binational management action to reduce sources of chemical contamination to the Great 

Lakes. The sediment sampling surveys are also the most comprehensive datasets that are 

available and they provide a robust basis for future survey design (Mitchell et al. 2018; 

Forsythe et al. 2016a; Forsythe and Marvin 2009). As a result, differences in the 

occurrence and distribution of cadmium between the 1971 and 1997/1998 surveys as 

determined using the multivariate kriging analyses are representative of reductions in 

loadings from primary anthropogenic sources.  
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Figure 1. Sampling locations from the 1971 and 1997/1998 sediment surveys. 

 

In Lake Erie, the average natural concentration of Cd in lake sediments is <1 µg/g 

(Marvin et al. 2003). The mean Cd sediment contamination throughout the lake has 

exceeded this threshold since 1971 (Table 1). 

 
Table 1. Descriptive statistics of Cd sediment contamination samples from Lake Erie. 

Year Sample 

No.  

Min. 

(µg/g) 

Max. 

(µg/g) 

Mean 

(µg/g) 

Standard 

Dev. 

Variance 

1971 263 0 10.8 2.36 1.48 2.2 

1997/1998 55 0 4 1.23 0.93 0.87 

 

2.1 Cd Contamination in Lake Erie  

 

The Lake Erie watershed is entirely encompassed by the emerging Great Lakes 

Megaregion (RPA 2008; Figure 2) developed by “the extraordinary dynamics [of] such 

an enormous and powerful concentration of people and activities” (Murphy 1962). Lake 

Erie is the smallest Great Lake by volume (484 km³; GLIN 2016), situated between 

southern Ontario, Canada and the northern borders of Ohio, Pennsylvania, and New 

York in the United States. Intensive and haphazard urbanization, agricultural and 

industrial practices have been an environmental and ecosystem concern since the 1960’s 

(Ashworth 1987). Detroit, Michigan and Cleveland, Ohio are known sources of 

historical industrial pollution to Lake Erie and its basin (Marvin et al. 2002). 
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Figure 2. The Great Lakes Megaregion encompasses the entire Lake Erie watershed, extending 

inland to several major American cities, and municipal regions of southwestern Ontario (RPA 

2008). 

 

2.2 Sediment Substrate Classification 

 

The western, central and eastern basins of Lake Erie are unique glacial, and geomorphic 

features physically divided by glacial moraines (Morang et al. 2011; Thomas et al. 1976). 

Depths decrease offshore, and from the western to eastern basin, remaining relatively 

flat throughout the central basin (Dusini et al. 2009; NGDC 1999). Thomas et al. (1976) 

describe a coarsening of sediment grains from the western to eastern basins apart from 

fine-grained sediments from shoreline erosion located in the deepest regions of the 

eastern basin. This eastward trend in sediment coarsening can be attributed to the 

prevailing west/southwest winds across Lake Erie, and the amount of wind-wave energy 

created across the expansive central Basin (Dusini et al. 2009; Thomas at al. 1976). Lake 

Erie contains a wide range of sediment grain sizes including glacial till (0.004 to <256 

mm), bedrock (≥256 mm), sand (62.5 µm to 2 mm), gravel (2 to <256 mm), and clay 

(0.98 to 3.9 µm) (Haltuch et al. 2000). Figure 3 displays a Lake Erie substrate map 

originally created by Haltuch et al. (2000) from data collected by Lewis (1966) and Rasul 

et al. (1997). 

Lake Erie can be further categorized into depositional and transport zones. 

Depositional basins (outlined in Marvin et al. 2002) are represented by substrate regions 

identified as “mud”. Fine sediment (0.98 to 3.9 µm) dominates the deep, offshore 

depositional basins (Thomas et al. 1976) including silts and clays according to the 

Wentworth Scale of Grain Sizes (Table 2 - Williams et al. 2011). Increasingly larger 

grain sizes are in shallower waters of the transport, or non-depositional zones (Marvin 

et al. 2002; Thomas et al. 1976) including the Pelee-Loraine Ridge, and the Long Point-

Erie Sill separating the western and central basins, and the central and eastern basins, 

respectively. Within seven kilometers of the shoreline is considered the littoral transport 

zone dominated by larger materials like sands, gravel, and glacial till (Morang et al. 2011; 

Dusini et al. 2009; Thomas et al. 1976). The distribution of substrates throughout Lake 

Erie is also indicative of lake-wide patterns of grain size and relative distribution. These 

spatial patterns are also representative of the relationships between grain sizes, lake 

circulation, wave-wind energy and overall movement of sediment types throughout the 

basin (Morang et al. 2011; Thomas et al. 1976). 
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Figure 3. Lake Erie substrates, re-drawn from (Haltuch et al. 2000). 

 
Table 2. The Wentworth (1922) Scale of Grain Sizes (Williams et al. 2011). 

Phi (φ) Size (mm) Wentworth Scale 

≥ -8 256 mm Boulders 

-6 to -8 64 to <256 mm Cobbles 

-1 to -6 2 to <64 mm Pebbles (granules to coarse) 

4 to -1 62.5 µm to <2mm Sand (very fine to coarse) 

8 to 4 3.9 to <62.5 µm Silt (very fine to coarse) 

10 to 8 0.98 to <3.9 µm Clay  

 

 

3 METHODOLOGY 
 

Previous research used spatial analysis techniques in concert with Geographic 

Information Systems (GIS) - based statistical analyses to assess temporal changes in 

sources and loadings of contaminants to several of the Laurentian Great Lakes (Mitchell 

et al. 2018; Forsythe et al. 2016a; Forsythe et al. 2016b; Forsythe and Marvin 2009; 

Forsythe and Marvin 2005). Using these techniques, the production of statistically valid 

concentration estimates based on interpolated point data was possible and provided a 

better understanding of the occurrence and distribution of contaminants over large areas 

of open-lake depositional environments. 

The results of this research provide for an improved understanding of the impact 

of anthropogenic contamination sources on open-lake environs and enable more directed 

monitoring and effective use of resources to track progress toward reducing the presence 

of toxics in the Great Lakes. Observations from previous analyses of Great Lakes 

sediment data sets have justified the focus on sampling of offshore depositional basins 

in more recent surveys as reductions in loadings of contaminants from historically 
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contaminated areas have been reduced, resulting in more diffuse distributions of 

contamination mostly confined to open-lake areas (Mitchell et al. 2018; Forsythe et al. 

2016a; Forsythe et al. 2016b; Forsythe and Marvin 2009; Forsythe and Marvin 2005). 

 

3.1 Kriging  

 

The kriging spatial interpolation method as implemented in the ArcGIS software (Esri 

2017), was used to create continuous data layers from Cd point data from the 1971 and 

1997/1998 surveys. Ordinary kriging was used to estimate the concentration of Cd in 

lake sediments at unsampled locations for both datasets. The parameters used to model 

the distributions for both years are presented in Table 3. These were determined through 

experimentation, goodness of model fit based on semivariograms, and estimation error 

outputs (Figure 4). 

 
Table 3. Kriging parameters used for modeling the 1971, and 1997/1998 datasets.   

Year Distribution 

Model 

Major Range 

(m) 

Minor Range 

(m) 

Direction 

(°) 

Lag Distance 

(m) 

1971 Spherical 100,000 50,000 90 30,832 

1997/1998 Gaussian 100,000 50,000 90 30,001 

 

 

 
Figure 4. Example semivariogram illustrating the fit of an Exponential model to the 1971 Cd 

dataset. 

 

The cross-validation statistics (Table 4) determine the amount of agreement 

between an interpolated value, and the measured value at the sample location (Li and 

Heap 2008; Ouyang et al. 2003). Valid kriging models provide accurate interpolated 

values when the Mean Prediction Error (MPE) is near 0, the Average Standard Error 

(ASE) is smaller than 20, the Standardized Root-Mean-Squared Prediction Error 

(SRMSPE) is near 1, and the MPE and ASE are similar (Forsythe et al. 2016b; Simpson 

and Wu 2014; Johnston et al. 2003). Predictive models with an MPE greater than and 

less than 0 represent under- and overestimation of kriged values in comparison to the 

actual measured values (Forsythe and Marvin 2005; Osburn 2000). Underestimation of 

variability in the kriged surfaces are identified when the SRMSPE is >1, while a 

SRMSPE <1 represents an overestimation of variability (Forsythe et al. 2016b; Johnston 

et al. 2003). 
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Table 4. Kriging cross-validation statistics of the 1971 and 1997/1998 sediment surveys. 

Year MPE  

(µg/g) 

RMSPE  

(µg/g) 

SRMSPE  

(µg/g) 

ASE 

(µg/g) 

RMSPE-ASE 

(µg/g) 

1971 0.003 1.125 0.995 1.120 0.005 

1997/1998 -0.009 0.933 0.996 0.938 -0.005 

 

The Canadian Council of Ministers of the Environment (CCME) have established 

thresholds of freshwater sediment contamination based on the likelihood of the 

concentration to create harmful biological conditions (Forsythe and Marvin 2009; 

CCME 1999). Measured Cd contamination <0.6 µg/g marks the Threshold Effect Level 

(TEL), at which harmful biological effects are not likely to occur (Forsythe and Marvin 

2009; CCME 1999). Measured Cd contamination ≥3.53 µg/g denotes the Probable Effect 

Level (PEL), where adverse biological effects are likely to occur (Forsythe and Marvin 

2009; CCME 1999). Cd concentrations measured between the TEL and PEL should be 

of temporal concern, as the measurement may increase or decrease between sampling 

surveys. 

 

3.2 Index of Geoaccumulation (Igeo) 

 

The Igeo Index was an additional method utilized in this research to identify pollution 

intensity. Müller (1969) devised the first scale of measurement for heavy metal 

contamination in aquatic sediments (Gupta et al. 2014). The research was applied to 

contaminated sediments of the Rhine River (located in Western Europe) relative to water 

quality standards of the International Association of Waterworks in the Rhine Catchment 

(IAWR); this index of geoaccumulation (Igeo) is now a widely accepted measure of 

sediment enrichment (Birch et al. 2015; Gupta et al. 2014).  

From a single sediment sample, the Index of Geoaccumulation identifies the 

amount of anthropogenic contamination relative to the background, or natural presence 

of the same metal (Förstner et al. 1993). Igeo calculates sediment enrichment by: 

 

 

Igeo = log2 (Cn /1.5Bn)                                                         (1) 

 

where Cn is the measured concentration of metal contamination, Bn is the measured 

background concentration of the same metal, which is multiplied by a factor of 1.5 to 

correct for lithologic effects (Gupta et al. 2014; Sabo et al. 2013). Sediment cores, dating 

back before anthropogenic influences, are used to measure and identify the background 

concentration of specific metals (Birch et al. 2015). Background concentrations of Cd in 

Lake Erie were measured at <1 µg/g in all three basins (Marvin et al. 2003).  

Igeo contamination values are ranked on a scale from 0 to 6, and then “graded” 

(Förstner et al. 1993) by the intensity of anthropogenic contamination (Gupta et al. 

2014). The Igeo classification established by Müller (1981) is presented in Table 5. For 

reference, Förstner et al. (1993) determined the highest Igeo class (6) to be 100-fold 

greater than Bn. 
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Table 5. Index of geoaccumulation and pollution classifications (Müller 1981). 

Index of Geoaccumulation (Igeo) Igeo Class Pollution Intensity 

>5 6 Very strong pollution 

>4-5 5 Strong to very strong 

>3-4 4 Strongly polluted 

>2-3 3 Moderately to strongly 

>1-2 2 Moderately polluted 

>0-1 1 Unpolluted to moderate 

<0 0 Practically unpolluted 

 

 

4 RESULTS AND DISCUSSION 
 

Cadmium as a non-essential heavy metal contaminant in Lake Erie, must be tracked 

spatially and temporally to anticipate potentially harmful ecosystem conditions. 

 

4.1 Change Detection 

 

To quantify and assess the degree and spatial extent of change in Cd sediment 

contamination, a change detection analysis was employed between the 1971 and 

1997/1998 interpolated kriging surfaces. First, the 1971 interpolated layer was clipped 

to the extent of the 1997/1998 interpolation since the smaller sampling density of the 

1997/1998 dataset resulted in different spatial interpolation extents. Next, to simplify the 

output change categories, Cd intervals for both time periods were aggregated to represent 

areas <TEL, ≥TEL to <PEL, and ≥PEL (Table 6). The contamination categories were 

then reclassified into unique numerical identifiers; for the 1971 dataset, <TEL was 

reclassified to 100, ≥TEL to <PEL to 200, and ≥PEL to 300. The 1997/1998 dataset was 

also reclassified as <TEL to 1, ≥TEL to <PEL to 2, and ≥PEL to 3. When added together 

using the Raster Calculator in ArcGIS (Esri 2017), unique combinations of the 8 

numerical identifiers allowed for categorization of the output into degrees of Cd 

contamination change between 1971 and 1997/1998.  All possible change combinations 

are listed in Table 7. 

 
Table 6. Cd values organized by whole contamination intervals.   

Contamination Intervals 

<TEL (µg/g) 

Contamination Intervals 

≥TEL to <PEL (µg/g) 

Contamination Intervals 

≥PEL (µg/g) 

0 - <0.20 ≥0.6 - <1.58 ≥3.53 - <4.51 

≥0.2 - <0.40 ≥1.58 - <2.55 ≥4.51 - <5.48 

≥0.4 - <0.60 ≥2.55 - <3.53 ≥5.48 
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Table 7. Calculated contamination change categories and their meanings. 

Change Category Description 

101 No change, <TEL 

102 <TEL in 1971 to ≥TEL to <PEL in 1997/1998 

103 <TEL in 1971 to ≥PEL in 1997/1998 

201 ≥TEL to <PEL in 1971 to <TEL in 1997/1998 

202 No change, ≥TEL to <PEL 

203 ≥TEL to <PEL in 1971 to ≥PEL in 1997/1998 

301 ≥PEL in 1971 to <TEL in 1997/1998 

302 ≥PEL in 1971 to ≥TEL to <PEL in 1997/1998 

303 No Change, ≥PEL 

 

4.2 Spatial Analysis 

 

Three areas of elevated contamination were identified from interpolation of the 1971 Cd 

survey (Figure 5). Along the southern extent of the central basin, two areas off the shores 

of Cleveland and Ashtabula, Ohio were identified to contain Cd sediment contamination 

≥3.53 µg/g or ≥PEL. Even greater concentrations of Cd were predicted from the lower 

reaches, and mouth of the Detroit River discharging into the western basin of Lake Erie. 

Cd contamination in this location is likely to exceed 5.48 µg/g, more than 1.5x the PEL. 

In total, Cd contamination ≥PEL is estimated to represent 3,246 km2, or 13% of Lake 

Erie sediments within the study boundaries. Moderate levels of sediment contamination 

were estimated in over 80% of the 21,277.75 km2 Lake Erie study area. Cd 

concentrations from 0.6 to 3.53 µg/g dominate most of the central basin, and the entirety 

of the eastern basin. Along portions of the Pelee-Loraine Ridge, and the Long Point-Erie 

Sill are the lowest estimated concentrations of Cd contamination ranging from 0.6 to 

<2.55 µg/g. 

The 1997/1998 sediment survey predicted lower overall Cd contamination values 

across the lake (Figure 6). Nearly 90% of the lake’s study area was estimated to have 

contamination values ≥TEL to <PEL; the range of Cd values ≥TEL to <PEL in the 

1997/1998 contamination map do not exceed 2.55 µg/g in contrast to the maximum 

interval measurement of <3.53 µg/g. Sediment contamination <TEL was identified in 

2,581 km2, or 10.5% of the study area, exclusively in the eastern basin. Interestingly, 

the southern shore of the central basin experienced higher concentrations of Cd nearest 

Cleveland and Ashtabula, Ohio, than any other area of the lake. This spatial pattern was 

also visible in the distribution of sediment contamination from the 1971 survey, although 

clearly not of the same magnitude in 1997/1998. 
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Figure 5. Kriging results of the 1971 Cd contamination in Lake Erie. 

 

 

 
Figure 6. Kriging results of the 1997/1998 Cd contamination in Lake Erie. 
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The result of detecting spatiotemporal change in sediment contamination between 

1971 and 1997/1998 is presented in Figure 7. The seemingly simplistic result was to be 

expected considering the contamination patterns presented in the 1971 and 1997/1998 

maps. Areas of elevated sediment contamination identified from the 1971 survey were 

reduced to Cd values measuring ≥TEL to <PEL in 1997/1998. The greatest magnitude 

of change was calculated near the mouth of the Detroit River, over an expanse of 

1,554.75 km2 or 6% of the study area. Here sediment contamination was estimated to 

exceed more than 5.48 µg/g in 1971. Cd concentrations ranging from 3.53 to 10.8 µg/g 

in 1971 decreased to a range of 0.6 to 1.57 µg/g in 1997/1998, reducing the range of Cd 

contamination in these sediments from 7.27 µg/g (1971) to 0.96 µg/g (1997/1998). In 

addition to the reduced Cd levels in the eastern basin by 1997/1998, approximately 24% 

of the study area reported a downward contamination trend from Cd values ≥PEL, to 

≥TEL to <PEL. Between the two survey periods, the majority of the lake (18,593 km2) 

maintained a consistent level of Cd contamination at the ≥TEL to <PEL interval. 

 

 
Figure 7. Change in Cd contamination concentrations and extent between 1971 and 1997/1998. 

 

Kriging of Cd concentrations and calculating Igeo values were completed 

simultaneously, but were analysed separately. The Raster Calculator was used to 

calculate the Igeo value for the 1971 and 1997/1998 datasets (Esri 2017). The Igeo layer 

was classified by the Sediment Accumulation Index (Müller 1981) with intervals ranging 

from <0 = “practically unpolluted” to >5 = “very strong pollution” (Table 3). The same 

method of change detection was applied to the Igeo maps from both years, just as it was 

employed with the kriged maps. The classified Igeo maps for 1971 and 1997/1998 were 

analyzed with the interpolated concentration maps, and the substrate map featured in 

Figure 8. 
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Figure 8. Anthropogenic pollution intensity measured by the index of geoaccumulation in 

contrast to the PEL isoline for the 1971 Cd dataset.   

 

From the 1971 survey, sediment along the Long Point-Erie sill was determined to 

be “practically uncontaminated” (Igeo= 0) with Cd aside from that occurring naturally. 

This level of pollution intensity was also identified in a section of the eastern basin, and 

along the northwestern shore of the central basin. Contamination levels ≥TEL to <PEL 

ranging from 1.58 – 3.53 µg/g were classified as “unpolluted to moderately polluted” 

(Igeo= 1) by the sediment accumulation index. Igeo indices calculated “moderate pollution” 

(5,573.25 km2) that exceeded the isoline boundaries of Cd concentrations predicted to 

be ≥PEL (3,246 km2) in 1971. For example, the highest values of anthropogenic Cd were 

identified in sediments at the mouth of Swan Creek, MI, southwest of the Detroit River 

inlet to Lake Erie. Cd concentrations were predicted to exceed 5.48 µg/g from the 1971 

survey; a subset of this highly contaminated sediment was identified to be “moderately 

to strongly polluted” from anthropogenic sources of Cd alone.  

Where Cd sediment contamination was predicted to be <TEL in the 1997/1998 

survey, the Igeo index also measured the levels of contamination in this region to be 

“practically uncontaminated” (Figure 9). This degree of pollution intensity suggests that 

traces of Cd in eastern basin sediments are naturally occurring. Along the southern shore 

of the central basin, most Cd values predicted between 1.58 and <2.55 µg/g were 

measured to contain “unpolluted to moderately polluted” sediments on the Igeo index. 

Several small areas of “unpolluted to moderately polluted” sediment standout against 

the “practically uncontaminated” state of the western basin; most notably the 

approximate 36 km2 area near the mouth of Swan Creek. 

12

International Journal of Geospatial and Environmental Research, Vol. 6, No. 1 [2019], Art. 3

https://dc.uwm.edu/ijger/vol6/iss1/3



 

 

 
Figure 9. Anthropogenic pollution intensity measured by the index of geoaccumulation in 

contrast to the PEL isoline for the 1997/1998 Cd dataset.   

 

At the mouth of the Swan Creek, a small section of Lake Erie was identified to 

have Cd contamination ≥PEL in 1971, and a higher Igeo Index value than surrounding 

areas in 1997/1998 (Figure 10). These research findings align with previous studies 

which used enrichment factors to establish connections between patterns of sediment 

contamination and historic anthropogenic activities in the lower Great Lakes (Marvin et 

al. 2002).   

Prior to the enactment of the Great Lakes Water Quality Agreement (GLWQA), 

the Great Lakes Steel Co., Allied Chemical Corp., Ford Motor Co., and Scott Paper Co. 

were identified as sources of industrial, inorganic and organic pollution in the Detroit 

River, Huron River and Swan Creek (USEPA 1965). Until 1967, spoils from the 

dredging of navigational routes in the Detroit River were often dumped into the open 

waters of Lake Erie (USAED 1974); the impacts of dredging activities were 

acknowledged for their economic benefits regardless of environmental degradation 

(Miller 1998). 

 

4.3 Raster Overlay and Sediment Substrate Analysis   

 

To assess the patterns and relationships amongst Cd contamination and sediment 

substrate types, both the 1971 and 1997/1998 predicted contamination maps were 

reclassified to <TEL, ≥TEL to <PEL, and ≥PEL contamination intervals. When overlaid 

with sediment substrate types, strong patterns of Cd contamination appear in regions of 

the lake dominated by clay, silt, and glacial till.   

In 1971, contamination ≥PEL represented 3,246 km2 or 13% of the study area 

(Figure 11). When overlaid with the substrate map, 90.44% of contamination ≥PEL was 
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identified in regions dominated by mud (68.86%) and sand/mud (21.58%). The 

remaining 9.56% of the study area with contamination ≥PEL was identified in regions 

of bedrock (3.74%), sand/gravel (3.54%), and glacial till (1.66%). The majority of Cd 

contamination in 1971 was predicted to range from ≥TEL to <PEL, representing 

21,227.75 km2 or 87% of the study area; the presence of contamination values <TEL 

was not identified in the 1971 survey. 

 

 
Figure 10. Extent of anthropogenic contamination identified by the Igeo Index around the 

tributaries of Swan Creek and the Huron River in the western basin of Lake Erie. Igeo class=3, 

1971, outlined in dark purple; Igeo class=1, 1997/1998, outlined in light purple (Esri 2017). 

 

Again, most of the contamination values ≥TEL to <PEL were identified in 

substrate regions dominated by mud (56.55%), as well as glacial till (20.85%). The 

remaining contamination ≥TEL to <PEL was identified in sand/mud (10.96%), 

sand/gravel (9.28%), bedrock (1.9%), and no data (>1%). Surface area (km2) coverage 

of Cd contamination ≥TEL to <PEL and ≥PEL by substrate type are presented in Table 

8. 

Similar relationships were identified between Cd contamination, mud, and glacial 

till from the 1997/1998 survey (Figure 12). In 1997/1998, contamination ≥TEL to <PEL 

represented 21,937.5 km2 or 89% of the study area; the presence of contamination values 

≥PEL was not identified from the 1997/1998 survey. The majority of Cd contamination 

≥TEL to <PEL was identified in substrate regions of mud (56.71%) while the same range 

of contamination was found in glacial till covering 18.74% of the study area. The 

remaining contamination ≥TEL to <PEL was identified in sand and mud (13.63%), sand 

and gravel (9.18%), bedrock (1.39%), and no data (>1%).  
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Figure 11. Cd contamination ≥TEL to <PEL and ≥PEL from the 1971 dataset by substrate type. 

 

Table 8. Surface area (km2) coverage of Cd contamination ≥TEL to <PEL and ≥PEL by substrate 

type from the 1971 dataset. 

Substrate Type <TEL (km2) ≥TEL to <PEL (km2) ≥PEL (km2) 

Mud  

 

n/a 

12,033.25 2,021.5 

Sand/Mud 2,331 633.5 

Sand/Gravel 1,975 115 

Glacial Till 4,435.5 54 

Bedrock 404 121.25 

 

Almost exclusively in the eastern basin, Cd contamination <TEL represents 2,581 

km2, or 11% of the study area. The majority (70.75% of the study area) of sediments 

contaminated with Cd <TEL were identified in substrate regions of mud. Low levels of 

contamination were also found in regions dominated by glacial till (15.57%), as well as 

bedrock (8.6%), sand and gravel (3.12%), sand and mud (1.85%), and no data (>1%). 

Surface area (km2) coverage of Cd contamination and <TEL and ≥TEL to <PEL by 

substrate type are presented in Table 9. 
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Figure 12. Cd contamination <TEL and ≥TEL to <PEL from the 1997/1998 dataset by substrate 

type. 

 
Table 9. Surface area (km2) coverage of Cd contamination <TEL and ≥TEL to <PEL by substrate 

type from the 1971 dataset. 

Substrate Type <TEL (km2) ≥TEL to <PEL (km2) ≥PEL 

Mud 1,826 12,440.50  

 

n/a 
Sand/Mud 47.75 2,990.50 

Sand/Gravel 80.5 2,014.5 

Glacial Till 401.75 4,111.75 

Bedrock 222 304.25 

 

The GLWQA has likely been the driving force in heavy metal pollution reduction 

in all four American shoreline states (Michigan, Ohio, Pennsylvania and New York) and 

the Canadian Province of Ontario (IJC 1972). Since 1972, the GLWQA has strived to 

“restore and maintain the chemical, physical, and biological integrity of the Great Lakes 

Basin Ecosystem” (IJC 2002). Interpolated sediment contamination maps show a lake-

wide trend of decreasing Cd levels ≥PEL from 1971 to 1997/1998. By 1997/1998, 89.4% 

of the interpolated area was predicted to contain Cd contamination levels between the 

≥TEL to <PEL threshold; sediment in the remaining area (almost exclusively in the 

eastern basin) was measured to be contaminated with Cd <TEL, and below the 

background levels of naturally occurring Cd. Specifically, the GLWQA is a form of 

administrative law, which intends to alter human behavior towards environmental 

stewardship and responsibility in the Great Lakes Basin (Tran 2009; IJC 1994; IJC 1982), 

another potential factor leading to the overall lake-wide decline in Cd contamination. 
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Since natural background levels of Cd in Lake Erie are measured at <1 µg/g, the 

≥TEL to <PEL threshold of contamination is subject to interpretation of Cd values 

ranging from >0.6 µg/g to <1µg/g. Contamination values in this range are considered to 

be naturally occurring traces of Cd, and are not likely to pose adverse biological effects, 

being so close to the TEL. That being said, Cd values above 1 µg/g and <PEL are 

increasingly likely (up to <3.53 µg/g) to cause adverse biological impacts from 

anthropogenic sources (Igeo values >1).  

All Cd contamination identified to be ≥PEL in 1971 is also suggested to be of 

anthropogenic origins by the Igeo Index. Overlay analysis identified these regions of high 

contamination to be in substrates dominated by mud. Moderate levels of Cd 

contamination ranging from ≥TEL to <PEL in 1971 were predominately located in 

glacial till substrates. Since glacial till is a medium for naturally occurring Cd, it was not 

surprising to identify contamination values ranging from 0.6 to <1 µg/g along the Long 

Point-Erie Sill, and the northwestern shoreline of Lake Erie. Anthropogenically sourced 

contamination in 1997/1998 was identified by the Igeo Index along the Ohio shorelines 

outside of the traditionally industrial city of Cleveland, Ohio whereas the eastern basin 

of Lake Erie measured contamination <TEL and as “practically uncontaminated” by the 

Igeo Index. 

 

 

5 CONCLUSIONS 
 

The results of this research further refined spatial analysis techniques for a broad range 

of toxic contaminants with similar sources. The visualization of Cadmium pollution 

patterns was improved and the use of the Threshold Effect Level and Probable Effect 

Level assisted in identifying regions of Lake Erie where adverse environmental effects 

were likely to pose health risks to aquatic life. When compared against the 

Geoaccumulation Index, high-risk regions (i.e. greater than or equal to the Probable 

Effect Level) fell within the boundaries of anthropogenically sourced Cadmium 

contamination. When sediment substrate characteristics were integrated into overlay 

analyses, interpolated Cadmium contamination surfaces were generated that added 

additional context with respect to polluted sediment distribution between 1971 and 

1997/1998. They effectively assess spatial and temporal changes in sources of sediment 

contamination throughout the lake. The levels of Cadmium contamination in fine-

grained sediments which pose the greatest risk of adverse biological impacts (greater 

than or equal to the Probable Effect Level) are likely the result of direct pollution 

originating from human activities. 

Spatiotemporal models of lake-wide heavy metal contamination were enhanced 

through this research. The identification of the most vulnerable regions of Lake Erie 

related to Cadmium contamination based on geochemical affinities contributes to a 

“weight of evidence” approach that can be useful for lake-wide remediation efforts and 

environmental policy implementation. The results weigh heavily in favor of long-term 

sediment remediation efforts and environmental policy implementation specifically in 

the western Lake Erie basin and along the Ohio shoreline. Excessive sediment 

contamination from anthropogenic sources was revealed throughout Lake Erie after 

considering naturally occurring levels of Cadmium (less than 1 µg/g). Patterns of 

contamination less than the Threshold Effect Level and greater than or equal to the 

Probable Effect Level are strongly reflected by the distribution of geoaccumulation 

indices. The geoaccumulation classes also provide some context related to Cadmium 
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contamination greater than or equal to the Threshold Effect Level to less than the 

Probable Effect Level. 
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